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Hermann Grassmann’s Ausdehnungslehre of 1844 and his Lehrbuch der Arithmetik of 
1861 are landmark works in mathematics; the former not only developed new 
mathematical fields but also both contributed to the setting of modern standards of rigor. 
Their very modernity, however, may obscure features of Grassmann’s view of the 
foundations of mathematics that were not adopted since. Grassmann gave a key role to 
the learning of mathematics that affected his method of presentation, including his 
emphasis on making initial assumptions explicit.  In order to better understand this less 
well-known aspect of his work it will help to examine why some commentators have 
overlooked his theme of unifying logic, pedagogy and foundations, while others have 
recognized it.  

1. Introduction 
When the German mathematician Hermann Grassmann (1809-1877) published his 

first and most important work, the Ausdehnungslehre, the ‘theory of extension’, (1844), it  
went virtually unrecognised, even when he presented essentially the same results in an 
entirely different way in his revised version, 1862. It took almost another decade before 
the relevance of Grassmann’s discoveries to mathematics at large began to be recognized.  
This may have been due partly to their large scale and novelty. He intended this to be a 
‘new branch of mathematics, explained through applications to the other branches of 
mathematics as well as to statics, mechanics, the theory of magnetism, and 
crystallography’, as the subtitle proclaimed.  

Grassmann was the first mathematician to explicitly make a distinction between 
geometry, as the science of our physical space, and a purely mathematical treatment of 
abstract objects (which he termed ‘extensive magnitudes’) that would have geometry as 
one of its applications but which would not be limited to three dimensions. Without going 
into details here, we can already see something of Grassmann’s grand vision and his 
methodology in his explanation of the place of  the Ausdehnungslehre in mathematics. He 
conceived mathematics as consisting of four branches based on two types of elements 
(equal and different) and two modes of generation of those elements (continuous and 
discrete). For example, in number theory or arithmetic the objects of study have an 
algebraic-discrete form and are generated from equal elements by a discrete positing and 
connecting, as in 1, 1 + 1, …. . In this classification scheme, the theory of extension is the 
branch concerned with objects of a combinatorial-continuous form generated from 
different elements by a single continuous mode. Grassmann’s primary concrete example 
of an extensive magnitude is the bounded line segment conceived as generated from the 
points which constitute it. (Grassmann carefully emphasized that such a geometrical 
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example was only a concrete representation of an extensive magnitude and not an 
example of the abstract entity.) The other two branches of mathematics are combinatorics 
(different elements, discrete generation) and analysis (equal elements, continuous 
generation). This overview of pure mathematics is followed in 1844 by a derivation of 
the concept of the theory of extension and by a discussion of the form of presentation 
(which latter will be addressed below). This is followed by a section which might be 
described today as devoted to a universal algebra and which Grassmann called the 
general theory of forms (Formenlehre), that is,  ‘truths, which relate to all branches of 
mathematics in the same way and thus assume only the general concepts of equality and 
difference, and of connection and separation’ (1844, §1). 1  

Perhaps mathematical developments needed to catch up with him, but certainly 
during most of his life the blame for the slow recognition was given not only to the 
novelty of the ideas but to the style of presentation, especially in the case of the 
Ausdehnungslehre of 1844. This earlier version has often been described as a work that 
was overly ‘philosophical’. Indeed Grassmann wrote in the foreword to his 1862 that, of 
the few mathematicians who shared their reactions to 1844 with him, all thought the work 
‘more philosophical than mathematical’. He does not name anyone but we know that one 
of his staunchest supporters, and probably the most famous one,  the German 
mathematician A. Möbius,  in 1845 declined to review his Ausdehnungslehre for 
publication pleading as follows: 

I am not competent to appreciate, indeed to even understand properly, the 
philosophical element of your excellent writing, forming the basis as it does of the 
mathematical element. I have come to realize also that, after a number of attempts 
to study your work without interruption, I have in each case been stopped by the 
great philosophical generality. (Grassmann, H. G. 1894-1911, vol. II, part 2, 100) 

This seems particularly ironic since Grassmann anticipated such criticism and took care 
to try to prepare his readers when he wrote that among mathematicians there was, ‘not 
without some justification, a certain aversion towards philosophical discussion of 
mathematical and physical matters; and indeed most investigations of this kind, as they 
are conducted by Hegel and his school in particular, suffer from an unclearness and 
arbitrariness which negates all their results’ (1844, p. xv).  In this mathematical context 
there may be a difference of usage of the term ‘philosophy’ between Grassmann and his 
contemporaries, on the one hand, and later students of the subject on the other. A modern 
reader would be apt to take this one mention of Hegel as the only explicitly philosophical 
reference Grassmann made in 1844, and find that nowhere else in his extant writings  did 
he relate his mathematical work to a philosopher or to a philosophical school. 
Furthermore, to such a modern reader, none of  those who knew Grassmann, or who later 
in the nineteenth century propagated his work, suggested any such connection in their 
writings. His biographer and principal editor of his collected mathematical and physical 

                                                
1 References are made to the sections of the Ausdehnungslehre of 1844 in order to 
accommodate the various printings and translations.  
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works, Friedrich Engel, quoted from an early curriculum vitae where Grassmann credited 
the theologian and philosopher F. Schleiermacher, whose lectures Grassmann attended at 
Berlin University from 1827 to 1830, with  being a strong influence in all aspects of his 
thinking (Grassmann, H. G. 1894-1911, vol. III, part 2, pp. 20-22). According to Engel, 
Grassmann continued reading Schleiermacher  throughout his life. The specific 
connection of Schleiermacher  to Grassmann’s mathematics, however, seems not to have 
been made until Arthur Schweitzer in 1915 (see Section 3 below). In the context of the 
meanings of ‘philosophy’ and ‘logic’ in the Ausdehnungslehre (quoted in Section 2 
below).  Grassmann regarded the philosophical component of the work to be the part 
devoted to logic. Thus, when Grassmann and his  mathematical  contemporaries refer to 
the ‘philosophical’ nature of the Ausdehnungslehre, they appear to be referring largely to 
what we would today call the abstract mathematical foundation which Grassmann laid 
down in 1844. In his 1862 rewriting, designed to  accommodate the difficulties readers 
had with the ‘philosophical’ nature, by far his largest change with respect to content was 
the omission of all of the discussion about the division of mathematics, the theory of 
forms, and the method of presentation. Some commentators who have not read the 
Ausdehnungslehre have perhaps misunderstood these early judgements by 
mathematicians and assumed that they referred to mathematically irrelevant matters. 
Morris Kline, for example, pictured its ideas as ‘shrouded … with mystic doctrines’ 
(Kline 1972, 782).  By contrast, as we shall see in Section 5, mathematicians today are in 
a better position to appreciate Grassmann’s work as a whole. 

In addition to the logical basis in Grassmann’s sense, his idea of a sound 
foundation for mathematics was designed to support both the method (or at least the 
course) of discovery and the method of proof. This comes from a leading feature in 
Grassmann’s conception of foundation: the essential role that the learning of mathematics 
plays.  That there could be a pedagogical motivation for combining threads of discovery 
and of proof in a mathematical presentation would hardly be unusual, but in Grassmann’s 
case it appears to be much more than a device to aid the reader; he appears to regard the 
pedagogical involvement as an essential part of the justification of mathematics as a 
science. Since the main influence of the Ausdehnungslehre has in effect been splintered 
off into mathematics and logic, the historical understanding of Grassmann’s original, 
unified work requires a somewhat different approach from that usually given in the 
general histories of those subjects.  

Though Grassmann has always held a respectably prominent place in general 
histories of mathematics and, to a lesser extent, logic, only in recent years has there been 
a significant number of papers and books devoted to him, including new translations into 
French and English (cited below). New works have appeared treating the history of logic 
and its relation to the foundations of mathematics that include Grassmann. Linear 
algebra, which began with Grassmann, has assumed an increasingly important role in the 
mathematical curriculum, with a consequent increase of interest in its origins. The present 
paper draws upon some newer literature that relates to this unifying theme either directly 
or indirectly. Since the Ausdehnungslehre and its poor initial reception can be taken as a 
cautionary tale for later writers, it is no surprise that since then it is not easy to find a 
work in this area of mathematics whose theme can match it with respect to grand 
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mathematical, philosophical and pedagogical intentions.  Nevertheless it is interesting 
how and to what extent investigations in the intersections of these areas still form a part 
of Grassmann’s legacy.   

Thus this survey will look at several works in mathematics, philosophy and 
pedagogy, including works in the history of these subjects. The main focus is on recent 
decades, but first a brief indication is given of Grassmann’s foundational ideas, followed 
by a review of some earlier works that will set the stage and help to show to what extent 
the more recent work is new, rather than simply a rediscovery or rephrasing of what was 
done before.  

2. Learner-based presentation and the role of logic 
In the foreword to 1862, his reworking of the little-read 1844, Grassmann 

recognized the desirability of having an appreciative readership and expressed a 
willingness to try to achieve this by presenting only the bare mathematical results while 
still being as rigorous as possible. His very brief explanation of what was lost from his 
original program by making such a radical change in his presentation serves to introduce 
the subject of this paper: Grassmann’s unified view of logic, pedagogy and foundations.  

This difficulty [which readers of 1844 had]  could not,  however, be removed 
without substantially changing the plan of the whole work. For it is not inherent in 
some arbitrarily chosen form but rather in the plan that I  envisaged: to build the 
science from the ground up, independently of the other branches of mathematics. 
The direct implementation of this plan raises significant difficulties for that form 
of presentation if the implementation is to be as expeditious for the science itself 
as it becomes subjectively [for the reader]. This is particularly so in a science such 
as the theory of extension which extends and intellectualizes the sensual intuitions 
of geometry into general, logical concepts and which, with respect to abstract 
generality, is not simply one among the other branches, such as algebra, 
combination theory, and function theory, but rather far surpasses them by 
unifying all of their fundamental elements. It thus could be said to form the 
keystone of the entire structure of mathematics. 

     I therefore had to abandon this whole plan, and now in the present work have 
assumed the other branches of mathematics, at least in their elementary 
development. Also, with respect to the form of presentation, I have adopted 
exactly the opposite direction from the earlier version since here I have applied 
what is generally speaking [überhaupt] the most rigorous mathematical form that 
we know, the Euclidean, and have relegated to the Remarks all that serves in 
illustrating [Erläuterung] or motivating  [Begründung] the chosen course.  

… the new method is in no way to be preferred over the older. On the contrary, 
the method of the first edition probes more deeply into the essence of the subject 
and thus from a purely scientific point of view has a decided advantage compared 
with the newer method. On the other hand this latter method is more acceptable to 
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those mathematicians who are  not willing to see lay fallow mathematical 
treasures that are obtainable in some alternate way, and it is easier for them to 
understand in any case. Thus the two presentations complement and elucidate 
each other.  (Grassmann, H. G. 1862, pp. iii-iv) 
In addition to introducing a new branch of mathematics in 1844, we see here that 

Grassmann had also hoped to introduce a rather novel method of presentation designed to 
meet the highest standards of rigor while also making clear the original motivations 
behind the new concepts he had discovered. Nowhere does he directly discuss the 
meaning of ‘rigor’ or what constitutes a proof but the main clue to Grassmann’s 
understanding of the current state of such foundational affairs in mathematics, and of his 
own contribution to changing that status quo, comes from the reluctant way he adopts 
what he regarded as a more ‘mathematical’, Euclidean style of axiom-definition-theorem-
proof presentation in 1862. In this work he assumed from the beginning a number system 
with the usual arithmetic properties and thus bypassed all of the introductory, 
foundational work of 1844. Part of his goal in 1844 was to clarify the true starting points 
for mathematics as a whole and rid it of hidden assumptions, and from a modern point of 
view his reluctance to simply try to employ the 1862 mode of presentation for the whole 
of his work may seem puzzling. However, the Euclidean style did have its critics and 
Grassmann hoped to capitalize on that fact. As he argued in 1844: 

13. The essence of the philosophical method is that it proceeds by means of 
contrasts to arrive at the particular from the general: the mathematical method, on 
the other hand, proceeds from the simplest concepts to the more complex, and 
thus, through connecting of the particular, attains new and more general concepts. 
… 

14. Since both mathematics and philosophy are sciences in the strictest sense, so 
must the methods in both have something in common which makes them thus 
scientific. Now, we add the scientific quality [Wissenschaftlichkeit] to a method 
of treatment when the reader is, on the one hand, led by it necessarily to the 
recognition of each individual truth, and, on the other, is put in the position at 
each point of the development of seeing the direction of further progress. 

     The indispensability of the first requirement, namely scientific rigor, anyone 
will grant. As for the second, that is another matter, not yet properly recognized 
by most mathematicians. Proofs often occur in which at first, if it were not for the 
statement [of the theorem] standing above, one would have no idea to where it is 
supposed to lead. Consequently, after one has blindly and haphazardly followed 
each step for quite some time, finally, before you expect it, that truth which was to 
be proven is suddenly attained. Such a proof can perhaps leave nothing to be 
desired in rigor, but it is not scientific; the second requirement is lacking, the 
provision of an overview. Whoever enters into such a proof does not attain an 
enlightening understanding of the truth, but rather remains in entire dependence 
on the particular manner in which the truth was found, unless subsequently he 
creates that overview himself. And this sense of constraint [Unfreiheit] which 
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arises in such a case, at least while learning it, is a most oppressing thing for one 
used to thinking freely and independently, and mastering all which he assumes 
spontaneously and vitally. If, on the other hand, the reader is put in the position at 
each point of the development of seeing where he is going, then he remains in 
command of the material, he is no longer bound to the particular form of 
presentation, and the incorporation becomes a true reproduction. 

15. At each point of the development the manner of further development is 
determined essentially through a leading idea [leitende Idee], which is either 
nothing other than a conjectured analogy with related and already known 
branches of knowledge, or which---and this is the best case---is a direct 
presentiment [Ahnung] of the next truth to be sought.  … 

16. Thus the scientific presentation in essence is an interlocking of two series of 
developments, of which one consistently leads from one truth to another and 
makes up the essential content, while the other governs the process itself and 
determines the form. In mathematics both these series stand apart from each other 
in the sharpest way.  

     It has been the practice in mathematics for a long time, and Euclid himself set 
the precedent, to allow only that one series of development to predominate which 
forms the essential content; as for the other, it was left for the reader to make it 
out between the lines. However complete the arrangement and presentation of that 
sequence of development may be, it is still impossible for the one who is 
supposed for the first time to learn to know the science, to readily obtain through 
that one series an overview at each point of the  development and to put himself in 
the position of continuing further independently and freely. To this end it is much 
more essential that the reader be placed as far as possible in that position in which 
the discoverer of the truth had to be in the most favourable case. … 

     … [M]ore recent mathematicians, and in particular the French, have begun to 
interweave both series of development. 

     … [I]nherent in the second series of development is a quite opposite character 
to the first, and the interpenetration of the two appears more difficult than in any 
other science. One ought not, on account of this difficulty---as frequently happens 
with German mathematicians---give up and repudiate the whole procedure. 

     In the present work I have thus taken the way described and it seems to me this 
is all the more necessary for a new science where its ideas should come to light at 
the same time at the beginning. (Grassmann, H. G. 1844, Introduction) 
In calling for the reader to have the same vantage point as the discoverer it should 

be noted that Grassmann adds that it is the discoverer ‘in the most favourable case’. 
Grassmann might have agreed in some sense with Gauss’s opinion that exposing to 
public view the work done in discovering new results in mathematics was like leaving the 
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scaffolding up around a finished cathedral. Grassmann’s notion, that it was important to 
present mathematics in a fashion that makes clear why it was constructed the way it was, 
does not entail, however, exposing the conjectures, false trails, or mistakes that Gauss 
may have had in mind as making up the scaffolding. Instead Grassmann’s 
Ausdehnungslehre can be seen as another effort in the line of attempts to combine a 
rigorous method of proof with  a method that aids discovery. From this point of view the 
two methods have their roots in ancient mathematics, and are often expressed  as the 
‘analytic’ and the ‘synthetic’, though these terms have such a convoluted history that 
deciding which term describes which method can depend on the particular context of the 
discussion. The meaning of the terms most relevant for Grassmann’s methods was used 
by the Greek mathematician Pappos who described an ‘analytic’ heuristic method, where 
the desired proposition was assumed and inquiry proceeded from it to  find propositions 
already proven, and to a ‘synthetic’ method which ordered the consequences of already 
proven propositions to arrive at the desired one.2 Grassmann only used the terms in his 
general theory of forms where he discussed connection [Verknüpfung] and separation 
[Sonderung]: 

The analytic process consists in seeking one member of a connection in terms of 
the result and the other member. … Since this analytic process can also be 
regarded as a connection, we distinguish the original or synthetic connection from 
the inverse or analytic connection. (1844, §5)  

The two strands relate also to the sentiment, often expressed by mathematicians and 
logicians, that  the purely formal, axiomatic expression of a body of mathematics does 
not capture the essence of the subject. The twentieth-century British mathematician G. H. 
Hardy concluded that ‘there is strictly speaking no such thing as mathematical proof; … 
we can, in the last analysis, do nothing but point’. He draws a rough analogy with a 
teacher who sees a mathematical construct clearly, in the way that one might see a distant 
peak clearly: ‘If he wishes someone else to see it, he points to it, either directly or 
through the chain of summits which led him to recognise it himself. When his pupil also 
sees it, the research, the argument, the proof is finished’  (Hardy 1929, 18). 3 

It is no coincidence that the use of contrasting or complementary opposites 
appears rather prominently in the parts of Grassmann’s work described thus far: 
philosophy (the general) and mathematics (the specific); the division of mathematics into 
four branches corresponding to combinations of two pairs of opposites, equal and 
                                                
2 F. Vieta in the sixteenth century linked the term ‘analytic’ to a whole branch of 
mathematics, namely algebra. Though Lagrange echoed this use in his Méchanique 
analitique of  1788, his proofs were synthetic in the sense used in Pappos’s heuristics. 
More of this tortuous history is provided in Grattan-Guinness 1997. 
3 Another example of this sentiment is: ‘The conclusion is that Logic, conceived as an 
adequate analysis of the advance of thought, is a fake. It is a superb instrument, but it 
requires a background of common sense’ (Whitehead 1941, 700). More examples can be 
found in Kline 1980. 
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different elements, continuous and discrete modes of generation; connection and 
separation; analytic and synthetic connections; and, overarching all of these, the 
complementary strands making up the method of presentation. This feature permeates the 
whole work. Nevertheless this dialectical character is not discussed by Grassmann—the 
only mention of dialetic in the Ausdehnungslehre is in the quote given below concerning 
the nature of the formal sciences.  Though it may have been an obvious feature to his 
readers, it appears to have been first analyzed in Lewis 1977 where the connection is 
made with Schleiermacher’s Dialektik of 1839 which Grassmann and his brother Robert 
read together in 1840.4 This brand of dialectic differed from the better-known one of 
Hegel in a number of respects but the most relevant difference for the Ausdehnungslehre 
is that, for Grassmann and Schleiermacher, there was in general no synthesis or 
resolution of opposites. It was the tension between contrasting pairs that determined the 
concepts and the species-genus relationships between those concepts as in the division of 
mathematics into its branches. The poles that determine a contrasting pair are not 
absolutes.  For example, the analytic process was introduced above as a kind of 
separation, but Grassmann indicated that it could also be conceived as a connection and 
this led in turn to the distinction between analytic and synthetic connections. For 
Schleiermacher  there was one ultimate resolution of absolute identity and absolute 
diversity grounded in the unity of the actual world (Schleiermacher  1839, 309). 
Grassmann’s implicit use of dialectic  did not extend that far and his largest unifying 
notion is, as we have seen, an appeal to the ‘scientific quality’ that comes through his 
method of presentation.  Nevertheless it seems clear that dialectic played a foundational 
role for Grassmann comparable to that which logic plays today in mathematics. In fact 
Grassmann identified logic and dialectic at the beginning of his Introduction to 1844: 

1. The highest division of all the sciences is into the real and the formal, where the 
first represent in thought the existent as standing independently over against 
thought, and have their truth in the correspondence of thought with that existent. 
The formal sciences, on the other hand, have as their object that which is posited 
through thought itself and have their truth in the correspondence of the reasoning 
processes among themselves. … 

2. The formal sciences consider either the general principles of thought or they 
consider the particular which is posited through thought—the former is dialectic 
(logic), the latter pure mathematics.  

The contrast between the general and the particular thus implies the division of 
the formal sciences into dialectic and mathematics. The first is a philosophical 
science since it searches for the unity in all thought, while mathematics takes the 
opposite direction since it conceives each thought individually as a particular.  

                                                
4 The author’s 1977 paper was an excerpt from his University of Texas at Austin 
dissertation which Ivor Grattan-Guinness encouraged him to publish.  
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3. Pure mathematics is therefore the science of the particular existent as 
something which has come to be through thought. The particular existent 
conceived in this sense we term a thought-form or, in short, a form. Thus pure 
mathematics is the theory of forms. (1844) 

In the 1878 reprinting of 1844, the author appended a footnote to the word ‘logic’ 
in the above paragraph 2: ‘Logic presents a purely mathematical side, which can be 
termed formal logic, and I and my brother, Robert, have worked on this together’ 
(Grassmann, H. G. 1878). 5 Grassmann provides a reference to the book Grassmann, R. 
1872. This illustrates how, in a dialectical fashion, each division of the sciences reflects 
within aspects of itself each of its determining contrasts. Thus logic contains formal logic 
as the ‘particular’ aspect of logic, while mathematics contains the theory of forms as the 
‘general’ aspect of mathematics. Logic and mathematics thus overlap in these areas.  

To give some idea of how Grassmann’s method of presentation  played out in 
practice in the body of his Ausdehnungslehre is a challenge to do in one or two 
paragraphs. Grassmann’s treatment of addition and subtraction of extensive magnitudes 
of the first step or order (called Strecke or stretches) took up fifteen pages, not counting 
illustrative applications. Their multiplication took twelve, but, if addition can be taken as 
a given operation, multiplication may be a more manageable topic for this illustration.  
For present purposes a sufficient idea of addition of stretches can given by the following 
example of adding linear motions: if a motion from point  A to point B is followed by one 
in a different direction from B to  C, the sum of the two motions is the motion from A to 
C, i.e. following what is today called the parallelogram rule for addition of vectors. The 
introduction of multiplication, as the next higher-order operation, in a dialectical fashion 
helps to explain and justify the earlier definition of addition of stretches. Multiplication as 
a general notion had already been introduced in the preliminary section on the theory of 
forms where its key defining property was distributivity  over addition (on the right and 
the left). Grassmann began his discussion of multiplication of stretches with a 
geometrical argument where the stretch can be understood as a line segment: 

     We start from geometry, not only in order to obtain the analogy according to 
which the abstract science must proceed, but also in order to have an intuitive idea 
in view which leads us through the unknown and often difficult course of the 
abstract development. We proceed from the stretch as a line segment to a spatial 

                                                
5 The two brothers collaborated rather closely on both the Ausdehnungslehre and the 
Lehrbuch der Arithmetik (1861) and, though it is not known exactly what each 
contributed, judging from his later work Robert, the younger broether, could well have 
been a major contributor within the philosophical and logical components. A brief 
account of Robert Grassmann’s place in the history of logic is  given in Grattan-Guinness 
1996 and Grattan-Guinness 2000. The collaboration of the brothers is discussed in 
Schubring 1996a.  
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entity of higher order  if we allow the entire stretch, i.e. each of its points, to 
describe a new stretch not homogeneous [that is, not in a continuation of the same 
line] to the first, so that all the points construct equal stretches.  The surface thus 
generated has the form of a spar-crystal face (parallelogram).  Now we give two 
such surfaces which belong to the same plane equal signs if, in passing from the 
direction of the stretch which is moved to the direction of the one constructed by 
the motion, in both cases it is towards the same side (e.g. to the left for both 
surfaces): they will be given different signs if such passage is in opposite 
directions. (1844 §28) 
Next Grassmann proved the following two theorems which are the geometrical 

forms of the left and right distributive properties: 

     If in the plane a stretch is shifted by arbitrary stretches one after the other, then 
the entire surface described by this (giving signs to the individual surface parts in 
the specified way) has the same magnitude as if it were shifted by the sum of 
those stretches. …  

     The surface which a broken line describes when it is placed in the plane is 
equal to that described by a straight line which has the same initial and terminal 
points.  (1844 §28) 
Grassmann then used the general sign of a synthetic connection, introduced in the 

theory of forms, to temporarily write the result of shifting  one stretch, a, by another, b, as  
a ∩  b. The two theorems can then be expressed as: 

a ∩  (b + c) = a ∩  b  +  a ∩  c, 

and 
(b + c) ∩ a = b ∩  a  +  c ∩  a. 

He continues: 

These were, according to para 9 [general theory of forms], the relations which 
determine a connection as multiplicative. The particular characteristic of this 
multiplication and the type of signs and terminology founded on it we will 
provide in the rigorous scientific presentation. (1844 §29) 
At this point Grassmann delayed the ‘rigorous’ presentation of this type of 

multiplication in order to underline what he regarded as the significant confirmation 
multiplication gave of the definition of addition of stretches. Grassmann was anticipating 
that the reader might not find this idea of addition intuitively appealing. Using the 
illustration given above for adding two motions, in what sense can this be addition when 
the result is a different object that does not contain the addends? The result will have a 
different direction and its length will not be the sum of the lengths of the addends. 

     In the relation presented here lies the most elegant justification of the concept 
of addition which we presented in the previous chapter. 
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     In fact, suppose one has an equation whose terms are stretches in the same 
plane but of unequal direction, and the equation no longer holds if the stretches 
are replaced by their lengths, thereby making the equation algebraic. We could 
then remove this apparent disharmony between geometric and algebraic equations 
immediately if we shift the whole system of those stretches  within the same plane 
and introduce the resulting surfaces into the equation; in other words, if we 
multiply the equation by a stretch of the same plane. As we have just shown, the 
equation under discussion holds also algebraically for the resulting surfaces, as 
long as one observes the given sign principle. (1844 §30) 
After showing that essentially  the same argument can be used even if the 

stretches are not in the same plane, Grassmann proceeded to give a formal development 
of multiplication. He pointed out the noteworthy property that the multiplication of 
stretches gives an element of a new species (Gattung) whereas addition resulted in an 
element of the same species. For example, the addition of two line segments resulted in a 
line segment, their multiplication resulted in a signed parallelogram. Thus multiplication 
(at least this type of multiplication, which Grassmann called outer multiplication) 
generates a higher-order element. In the formal development the primitive concept is 
‘generation’ and a new mode of generation provides a new connection between elements. 
The argument closely parallels the geometric analogy where, in the expression a ∩  b,  a 
can be taken as the generator and b the measure of generation. The result is an extension 
of second order which can in turn undergo a generation of the same mode, c, and so forth, 
a ∩  b ∩ c … to obtain an extension of nth step. He then argued that ‘if A and A1 are two 
homogeneous [i.e. generated by the same mode] extensive magnitudes of arbitrary order 
and, further, generated in the same sense, and b represents a stretch then we always have:  

( A + A1) ∩ b = A ∩ b + A1 ∩ b, 

where A ∩ b and A1 ∩ b  are homogeneous and where the sign of connection represents 
the new type of connection’. A similar argument shows that   

A  ∩ (b  + b1) = A ∩ b + A ∩ b1 , 

where b and b1 are stretches generated in the same sense.  

     It is clear that this can be extended, by repeated application of this principle of 
relation, to arbitrarily many factors. Since, according to §9 [general theory of 
forms] this principle is the fundamental principle of multiplication, then we will 
say that the new type of connection has the multiplicative relation to addition of 
that which is generated in an equal sense. Hence all the principles deduced from 
this hold here …. With this our new connection is now established, according to 
§12 [the real concept of multiplication in the general theory of forms], as 
multiplication and we thus introduce for it also the multiplication symbol [i.e. a 
dot]. (1844, §32)  
Grassmann proceeded next to a more general notion of multiplication which 

distributes over addition of inhomogeneous stretches. His final stage was the proof of the 
characteristic properties of this new multiplication, called outer multiplication: 
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(a + b1) . b =  a . b     and      b . (a + b1) = b . a 
where b and b1 are homogeneous stretches, a an arbitrary stretch, and the dot (introduced 
later in the Ausdehnungslehre) represents outer multiplication. From these and the fact 
that (a + b)  . (a + b)  = 0 he showed that a . b  +  b . a = 0 or a . b  =  − b . a. The fact that 
this multiplication is non-commutative, and thus unlike the usual arithmetic 
multiplication, is probably one of the reasons Grassmann took pains to justify it as fully 
as possible. It is also quite likely one of the reasons why some readers at the time—even 
among those who were willing to tackle the foundational component—found the whole 
of Grassmann’s program objectionable. This unusual multiplication, and indeed all that 
preceded it in the book, appeared to depart from the prevailing Kantian notion of the 
indispensability of intuition in mathematics. E. F. Apelt, professor of philosophy at Jena, 
wrote to Möbius in 1845:  

     Have you read Grassmann’s remarkable Ausdehnungslehre? It seems to me 
that a false philosophy of mathematics is at the bottom of it. The essential 
character of mathematical knowledge, that it is intuitive, seems to be excluded 
from it completely. An abstract theory of extension such as Grassmann wishes 
can be developed only from concepts; but the source of mathematical knowledge 
is found not in concepts, but in intuition. (quoted from Grassmann, H. G. 1894-
1911, vol. 3, part 2, 101). 

3. Some early Grassmannians 
Only when Grassmann’s ideas began to be propagated by others, and by himself 

in journal articles, did either of his books devoted to the theory of extension  receive 
much attention. It may be unprecedented in the history of science for such a seminal work 
to have appeared in dual, complementary forms. Grassmann’s effort to achieve 
recognition resulted, therefore, in an intriguing exploitation of both sides of what has 
been a fundamental divide in mathematics. 

Some accounts of the Ausdehnungslehre have assumed that the more 
‘mathematical’ 1862 version  appealed to mathematicians and garnered attention from its 
first appearance, but my account follows more that of Victor Schlegel, Grassmann’s 
colleague, who believed that initially it too suffered the same fate as the earlier version 
(Schlegel 1872, p. vii). The 1862 edition, he judged, failed to give a helpful overview of 
the whole system and had tiresomely, even if necessarily, long proofs.6 The 1844 version 
had gone out of print, with unsold copies being shredded by the publisher, and thus at 
some point the 1862 edition became per force the principal source for the subject and 
continued as such to some extent even after the reprint of the earlier version in 1878. 

                                                
6 Because Felix Klein held Schlegel in an unfavourable light, Schlegel’s views are apt not 
to get the historical weight they deserve. Probably due to Klein’s influence, Schlegel was 
invited to contribute only to the bibliography in the grand Werke project (Grassmann 
1894-1911). On the Schlegel–Klein relationship see Rowe 1996. 
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Hankel is credited with giving the Ausdehnungslehre its first major exposure in his 
extensive and enthusiastic use of it in Hankel 1867. He even appears sympathetic to what 
he terms the ‘philosophical’ presentation of the 1844 version which he deemed 
appropriate for the subject even if it did turn away some readers (p. 16).  

Hankel and Schlegel used the term ‘philosophical’ in the same sense as 
Grassmann, i.e. referring to the abstract approach to the fundamental entities and 
operations described above in Section 1. Neither Hankel nor Schlegel seemed to have 
viewed the pedagogical element, however, as a part of  this philosophical aspect, and they 
made no reference to the larger theme that Grassmann referred to as the scientific nature 
of  the undertaking. These aspects were equally overlooked by those contributors to the 
development of mathematical logic who read Grassmann, such as E. Schröder, G. Peano 
and G. Frege. The work that these three read was primarily Grassmann’s arithmetic 
textbook, the Lehrbuch der Arithmetik (Grassmann 1861). As remarkably ahead of its 
time as the Ausdehnungslehre, it adopted the same abstract approach from the beginning 
as the 1844 work, as, for example, by first defining and proving the basic properties for 
what he termed a ‘fundamental series’ (an infinite cyclic group) before introducing the 
integers as a series that satisfies the same properties. It made what is generally regarded 
as the first explicit use in the literature of the principle of mathematical induction  and is 
the source of the theorems and proof structures used in Peano’s presentation of his 
axioms for the natural numbers.7 The Lehrbuch, however, used only one of the two 
strands of presentation that Grassmann described in the Ausdehnungslehre and made 
rigor the highest priority. Reviewers at the time generally recognized the advance in rigor 
the Lehrbuch represented, but did not believe that it was suitable for classroom use. 
(Grassmann’s 1844 Ausdehnungslehre was never reviewed.) Frege, in a critical review of 
arithmetic textbooks of his time, found much to admire in the Lehrbuch and only one 
significant, and easily remedied, flaw—though this was still enough for him to conclude 
that Grassmann’s ‘rigor’ was thus only superficial (Frege 1884, p. 8). Schröder relied 
upon Grassmann’s Lehrbuch in his own textbook of arithmetic and algebra (1873) but  
seems not to have been acquainted with the Ausdehnungslehre of 1844. He, in effect, 
arrived at the same conclusions about the desirability of a dual presentation as Grassmann 
and used Grassmann’s Lehrbuch as an example of a one-sided approach. However 
appropriate Grassmann’s work was for such an example, this was probably a dismaying 
state of affairs from Grassmann’s point of view. Schröder’s second chapter began: 

    In what follows I will handle the preceding material in two fundamentally 
different ways which are independent of each other and each of which has its own 
advantages. 

                                                
7 Grassmann does not give a statement of mathematical induction but rather, in his first 
use of it in a proof, states that this is an example of a proof by induction. Peano’s system 
is given in Peano 1889, translated in Peano 1967. An overview of the Lehrbuch’s import 
is given in Lewis 1995  and an evaluation of its logical basis is made in Wang 1957.  
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     The so-called independent [independente] treatment has the advantage of 
providing an immediately accessible motivation for complete comprehension …. . 

     … It is in addition the method through which the theory historically has been 
gradually developed. 

     The other method of treatment, which we call the recurrent [recurrente], 
comes from the requirement of greater rigor with a view to achieving the greatest 
simplification of the initial assumptions and reducing the argument used. We owe 
this principally to Grassmann and can say that the stated goal is attained through 
this means;  it leaves hardly anything further to be desired with respect to 
thoroughness. Even if this method may not be recommended for the beginner of 
average capabilities … it is of such methodological interest that I cannot refrain 
from assimilating it into the present textbook—especially since the latter aims to 
be thorough. (Schröder 1873, 51-52) 
Since Grassmann also used essentially only the one method of presentation in his 

1862,  this may have been a period where he simply gave up using the dual method which 
may have seemed not worth the trouble.  Unlike his Ausdehnungslehre, arithmetic could 
not be claimed by Grassmann as a new branch of mathematics and this too may help 
account for the absence in the Lehrbuch of any concern with providing the learner with 
the same sort of overview as the discoverer. It is not clear what background Grassmann 
assumed for the Lehrbuch but it is likely that the students, if there ever were any who 
used it, would have had an acquaintance with numbers. In his introduction he emphasized 
the need for the most rigorous  possible approach to inculcate a logical mind-set for the 
student. ‘This goal, however’, he stated, ‘will not be attained by insisting only on a series 
of one formula after another without a conceptual development. Rather there must be 
both: the formulaic development must always proceed hand in hand with the conceptual 
development’ (Grassmann 1894-1911, vol. 2, part 1, p. 296).  Thus Grassmann was 
hardly abandoning the basic approach of 1844 but the Lehrbuch is decidedly a weaker 
version in this respect. There is no explicit indication of  a change of heart, and it seems 
unlikely that there would be such a fundamental change given the attachment he 
expressed for his earlier work in the last years of his life.  

Shortly before he died in 1877 Grassmann felt that the rising interest in his work 
justified a reprint of the 1844 version of the Ausdehnungslehre.8 By 1910 there were a 
number of purported versions of Grassmann’s calculus of extension, from brief 
‘essentials’ in journals to extensive treatises, and from straightforward translations of 
excerpts to substantially new systems that were nevertheless still in the Grassmann 
algebraic or analytic geometry tradition. In good part these were motivated by the 
competition between vectors and W. R. Hamilton’s quaternions that has been well 
described in Crowe 1985. By the time the monumental edition of Grassmann’s 

                                                
8 Grassmann 1878  is the basis of the 1844 version printed in vol. I, part 1, of Grassmann 
1894-1911. 
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mathematical and physical works, the Werke (1894-1911), was completed Grassmann’s 
importance in mathematics was being recognized in the literature. In fact the period from 
about 1910 to 1940 may have been something of a high point for historical recognition of 
Grassmann, at least in the area of geometry, even as mathematical interest in him 
declined during this period. His influence had likely largely faded away by the time of H. 
G. Forder’s The Calculus of Extension (Forder 1941), which, as the author indicates in 
the preface, was essentially completed in 1933. The first translation of the 1844 
Ausdehnungslehre appears to have been into Spanish in  Grassmann 1947. It is a measure 
of a hiatus in Grassmann interest that French and English translations, by D. Flament 
(Grassmann, H. G. 1994) and L. Kannenberg (Grassmann, H. G. 1995) respectively, 
appeared so much later. Unfortunately, during this earlier period there seems to have 
been no publication that delved at all deeply into the unifying theme of the 1844 
Ausdehnungslehre. ‘Unfortunately’ because such luminaries as G. Peano, A. N. 
Whitehead, and E. Cassirer had studied the book with some care and made use of it in 
various ways.9 They may not have regarded Grassmann’s Schleiermachian-influenced 
notions as worth attention, but it would have been enlightening to have their critique in 
any case. The only writers evident from this period who appeared to have an appreciation 
of this theme were in the United States, and these---Paul Carus and Arthur Schweitzer---
did not have such a great international influence in mathematics or philosophy.  

Such influence as Carus (1852–1919) had come mainly as  the editor of The Open 
Court and Monist, journals that were based at La Salle, Illinois, and that were highly 
regarded in history and philosophy of science circles. Carus had been a student of 
Grassmann in Stettin and made the Ausdehnungslehre a starting point in presenting his 
own monistic philosophy that sought to unite science and religion.10 Many of his articles 
cited Grassmann, and in one, where he gave more detailed attention, he maintained that 
‘Grassmann has taught us to dive down to the bottom of the problems, where we can 
understand the origin and whole growth of mathematics and where they are seen to be in 
connection with the other facts of reality’ (Carus 1889, p. 1471). In this same paper 
Carus identifies Grassmann’s aim of providing an ‘overview’ for the learner at each step. 
Carus gives this an expansive interpretation: ‘Grassmann’s method allows a survey of the 
whole field and thus gives to the student that easy freedom which a traveller feels who 
constantly keeps in sight the point towards which he is journeying, as well as the road on 
which he approached’ (p. 1472).  

Schweitzer also spent his career in Illinois, though there does not appear to be any 
other connection between the two men. Arthur Richard Schweitzer’s dissertation in the 
mathematics department at the University of Chicago, published in 1915, is remarkably 
relevant to the topic of this paper, but it is also appropriate to dwell on it here because it 

                                                
9 The representative works are: Peano 1888, translated into English as Peano 2000; 
Whitehead 1898, discussed in relation to Grassmann in Lowe 1985-1990, vol. 1, pp. 153-
56; and Cassirer 1953, pp. 96-99. 
10 Meyer 1962. 
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appears not to have been noted in the literature before.11 Schweitzer (1878–1957) 
describes the role of the ‘leading idea’, or ‘idée directrice’, in the development of the 
logic of mathematics. In a short span he draws upon an impressive variety of prominent 
and not so prominent mathematicians and logicians,  from Boole to contemporaries such 
as C. S. Peirce, B. Russell,  D. Hilbert, and H. Poincaré. Grassmann is cited more often 
than any other person. Schweitzer’s idée directrice  is essentially, he says, Grassmann’s 
leitende Idee  described above at the beginning of section 2: 

At the beginning, following Grassmann, the leading idea is ‘obscure 
presentiment’ [dunkles Vorgefühl]; results of this presentiment are then critically 
analyzed and the discovery of the truth follows  if  the leading idea is correct. 
(Schweitzer 1915, p. 5) 

Schweitzer follows Grassmann in asserting that mathematicians are little disposed to 
admit l’idée directrice  into pure mathematics: 

In the midst of this uniformity, Grassmann’s  expositions form remarkable 
exceptions.  The Ausdehnungslehre of 1844 is perhaps unique in the mathematical 
literature, in the sense that it frequently shows and explicitly recognizes the 
genetic act of the discovery. (1915, p. 13) 
As part of his conclusion, Schweitzer gives four examples of leading ideas in the 

logical foundations of mathematics: the principle of comparison; the principle of 
continuation; the principle of the economy of thought; and the principle of the special 
situation. One example of the first principle is E. H. Moore’s dictum in his General 
analysis of 1910 that ‘The existence of analogies between central features of various 
theories implies the existence of a general theory which underlies the particular theories 
and unifies them with respect to those central features’ (Moore 1935, p. 1). The idée 
directrice stands as an instrument in Schweitzer’s scheme mediating between a class of 
givens on one side and the actual implementing agents on the other. The latter he 
describes as ‘explicit mediators’, médiateurs explicites, and one example is Moore’s 
general analysis as mediating  between four mathematical theories. The 
Ausdehnungslehre not unexpectedly takes pride of place as being the premier historical 
example with explicit mediations—falling mainly under the principle of comparison—
permeating the work. Schweitzer even goes so far as to suggest that Grassmann may have 
aimed too high in this direction when he stated that the theory of extension ‘could be said 
to form the keystone of the entire structure of mathematics’ (quoted above in Section 1 
from Grassmann’s 1862): 

                                                
11 In Schweitzer 1915 the author mentions that Schleiermacher is undoubtedly a source of 
a number of Grassmann’s notions, in particular that of ‘leitende Idee’. Though he does 
not justify this observation beyond citing a few parallel passages in Grassmann and 
Schleiermacher, it is the closest statement I know of to the thesis in my 1977 in prior 
literature. 
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Grassmann recognized clearly that mathematical theories were only instruments;  
in fact, he even went so far as to believe that his calculus was of absolute 
universality in mathematics.  This belief was probably erroneous;  perhaps 
Grassmann had in mind the possibility of incorporating symbolic logic in his 
system. (p. 21) 
There appears to be minimal information about Schweitzer in standard sources.12 

He published a number of  works that reflect a University of Chicago background, 
especially in geometry (O. Veblen, E. H. Moore), as well as a background in the  US 
school of pragmatism (C. S. Peirce, W. James, J. Dewey, G. H. Mead, A. W. Moore). It 
seems clear, however, that his main  inspiration comes from Grassmann: some of his 
publications relate very directly to Grassmann, such as Schweitzer 1908  while others, 
such as Schweitzer 1909 and Schweitzer 1913 frequently cite Grassmann. A piece 
intriguingly titled ‘The Logic of Grassmann’s Extensive Calculus’, gives a collection of 
axioms gathered from the 1844 Ausdehnungslehre from which, he proposes, the results in 
the 1862 edition and in Grassmann’s subsequent journal articles can be proven.  The fact 
that Schweitzer is so little cited in the literature of his time probably indicates that his 
Grassmannian direction was regarded as out of the mainstream of mathematics and that 
the Ausdehnungslehre was deemed to have served its purpose by then. Thus its use as an 
authoritative mathematical work from which to draw examples, for instance to refute the 
mathematical contentions of the US school of ‘new realists’ as Schweitzer undertook to 
do, may have been regarded as dated at the time.13  

4. A revival of interest 
In 1994 the sesquicentennial of the 1844 edition of Hermann Grassmann’s 

Ausdehnungslehre was observed on the island of Rügen, not far from the Baltic port city 
of Sczcezin in Poland where Grassmann spent most of his life. (It was named Stettin in 
Grassmann’s time when it was a part of Germany.) This gathering brought together many 
threads of Grassmann’s life as mathematician, physicist, philologist, teacher, and 
musicologist. It testified to a continuing interest in his work and to an ongoing influence 
of that work. As such anniversary celebrations can do, this one suggested new avenues of 
possible influence and new insights into Grassmann’s genius. It also gave a vantage point 
from which to look anew at Grassmann as a whole and to explore to what extent he had a 
unified program across the various disciplines to which he contributed. This is probably 
the best source, next to the Werke, for anyone wishing to find out more about Grassmann.  

                                                
12 Schweitzer’s birth date is given as 1877 in Sommerville 1970 but appears as 1878 in the 
Library of Congress catalogue. There is a notice in the American Mathematical Monthly, 
64(1957), p. 611, of his death on 12 June 1957.  
13 Schweitzer 1914 is reprinted in de Waal 2001  from which I first learned of this 
Grassmannian. 
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Part of the new interest in Grassmann may stem from the increased importance of 
linear algebra. The reason for the latter has been summed up by the US mathematician 
Alan Tucker: 

In the 1960s, linear algebra was positioned to be the first real mathematics course 
in the undergraduate mathematics curriculum in part because its theory is so well 
structured and comprehensive, yet requires limited mathematical prerequisites. A 
mastery of finite vector spaces, linear transformations, and their extensions to 
function spaces is essential for a practitioner or researcher in most areas of pure 
and applied mathematics. Linear algebra is the mathematics of our modern 
technological world of complex multivariable systems and computers. (Tucker 
1993, p. 3)  
The trend Tucker describes is exemplified by Jean-Luc Dorier, who was led to 

pursue the history of linear algebra by his researches into the teaching of vector space 
theory at French universities. Given this background it seems especially appropriate that 
he would appreciate the pedagogical aspects of Grassmann’s Ausdehnungslehre. In 
Dorier 1996  he analyzed a principal theorem dealing with the dimension of a vector 
space which Grassmann stated as: 

The same system of m-th order is generable by any m methods of generation 
belonging to it that are mutually independent (in the sense of §16), that is, that are 
included in no system of lower order (than the m-th). (Grassmann 1844, §20) 
Grassmann has not yet introduced numbers as multipliers of his generating 

entities and thus the concept of a linear combination of them becomes possible only later 
in his presentation. Nevertheless in modern terms, taking Grassmann’s statement in the 
context of the whole Ausdehnungslehre, “methods of generation … that are mutually 
independent” corresponds to a basis of the m-dimensional space or “system of m-th 
order.” Part of the importance of the concept of basis is that any two bases for the same 
space contain the same number of elements (i.e. base vectors or “methods of generation”) 
and Grassmann’s statement above is a lemma used in proving this property. As a whole it 
corresponds to the following modern form, taking V as  a “system of m-th order” (F,  the 
field of numbers associated with V, has no direct correspondence in Grassmann at this 
point): 

If v1, . . ., vm is a basis of V over F and if w1, . . ., wn in V are linearly independent 
then n ≤ m. (Herstein 1964, p. 140, interchanging m and n)  

Grassmann recognized the same two principal methods for proving this that can be found 
in modern textbooks: an elimination method and the exchange method. He chose the 
exchange method. (This procedure, by the way, is often named after Steinitz, who used it 
in the second decade of the twentieth century with no mention of Grassmann. The name 
exchange theorem, Austauschsatz, came later.) 

In the elimination method one might show that every subset of V which contains 
more than m vectors is linearly dependent. In the exchange method the basis of v’s is 
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augmented with wn and it is argued that since this resulting set spans the space and is 
linearly dependent it contains a subset which is a basis. Sufficient of the v’s are then 
removed to leave only this basis, wn-1 is adjoined to them to form a new linearly 
dependent, spanning set, and, applying the same argument as before, v’s are removed 
from this set to arrive at a new basis. This process is repeated as far as w2. This 
‘exchange’ of w’s for v’s cannot proceed to replace all the v’s since the remaining w1 
cannot be expressed as a linear combination of the w’s alone. Thus n ≤ m. This précis of a 
modern proof is far removed from Grassmann’s presentation—though he has all of the 
concepts, he has little of the compact terminology that has since been developed.  

One of the reasons many modern authors tend to favour the exchange method of 
proof for this theorem probably is that it uses essentially only concepts and results that 
have been developed immediately before, rather than, for example, using coordinates and 
converting it into a problem dealing more with systems of linear equations. Also, it is a 
method that can be used in other contexts. Dorier, after careful analysis of the way 
Grassmann used this method in both versions of the Ausdehnungslehre, came to the 
conclusion that Grassmann developed the method precisely as a consequence of his 
pedagogical philosophy and that it was only in the version in the Ausdehnungslehre of 
1844 that the justification of the method is completely evident. As Grassmann himself 
stated, it was not only ‘elementary, but in addition has the advantage that the most 
essential basic relations between the extensive magnitudes stands out more clearly’ 
(Grassmann 1862, §24). Dorier agreed that the use of the exchange procedure ‘comes 
naturally within the form of presentation adopted in the Ausdehnungslehre’ (p. 182).  

The teaching of linear algebra has been the subject of a different type of study in 
Harel 1999. Though Grassmann and the history of linear algebra are not involved, this 
paper gives an interesting corroboration from a student’s point of view of the two-sided 
nature of learning. Based on classroom observations, interviews, and written tests, he 
identifies two main categories of student understandings of proofs. In one there appears 
to be a reliance on spatial imagery to the extent that students do not see geometric 
properties as abstract structures. The second, experienced by more advanced students, is 
the questioning of the truth of a theorem even after apparently understanding all the steps 
of its proof. These two groupings probably confirm what an experienced teacher would 
have conjectured, but as the author points out, these understandings have parallels in the 
historical development of mathematics itself:  he identifies the first---need for spatial 
imagery---with the Greek period and the second---need to know ‘why’ rather than just 
‘how’---with the sixteenth and seventeenth centuries when some mathematicians, such as 
Descartes, rejected indirect proofs in favour of direct demonstrations of mathematical 
truths.  

5. Revising Grassmann: points or vectors? 
Several commentators have noticed what might be taken as a difficulty, if not a 

flaw, in Grassmann’s handling of the notion of the difference of two points, B! A . 
Grassmann’s complete discussion is quite general, but even if we restrict ourselves to the 
example of points in a Euclidean line, plane, or three-dimensional space, this innocent-
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sounding issue raises some deep problems of interpretation of Grassmann’s text. This in 
turn raises different possibilities for re-expressing Grassmann’s ideas for a textbook of 
today. The two principal examples given here are the US mathematicians A. Swimmer 
and F. W. Lawvere. 

Alvin Swimmer points to the ‘miscegenated addition’ in modern treatments of 
affine space which give a meaning to adding a point and a vector, resulting in a point, or 
to subtracting one point from another, resulting in a vector (Swimmer 1996). There is no 
meaning to adding one point to another. He claims that this ‘unfortunate’ situation can be 
traced back to the status of vectors, rather than points, as the fundamental entity in the 
Ausdehnungslehre. It could be argued that historically Grassmann was not to blame for 
this; to the extent that he was a source it is likely to have come from a particular 
interpretation that gained currency.14 However, it is not Swimmer’s purpose to back up 
this claim, but rather to show how one might obtain the best of several worlds (physical, 
algebraic and geometrical) by recasting Grassmann’s presentation. This is done by 
following Möbius’s 1827 barycentric calculus, an influence on Grassmann, more closely 
than did Grassmann.  Starting with weighted points we can define the sum of two points 
as their centre of mass. The difference, B! A , when the two weights are each equal to 1, 
is a point at infinity.  Points at infinity can be distinguished by their magnitudes; in the 
case of B! A  this is the length of the oriented line segment from A to B. B! A  is also 
associated with a family of parallel lines. ‘Thus “vector” and “point at infinity” are 
simply two different ways of looking at the same concept’ (p. 274). This results in an 
introduction to the subject which indeed exhibits a unity that appears to be lacking  in the 
Ausdehnungslehre of 1844 and still satisfies Grassmann’s aim of presenting matters in 
such a way that ‘the intellect grasps the progressive development of the idea with each 
formal development of the mathematics’ (1894, p. 9, Swimmer’s translation). 

William Lawvere, in his 1996  addresses the same issue of points versus vectors 
from a different perspective. As one of the principal proponents of category theory, it is 
noteworthy that he regards Grassmann as a precursor of that subject. In addition to a 
certain similarity of approach to the development of algebraic structures, the 
Ausdehnungslehre and  category theory raised analogous metamathematical issues in 
their respective times, since each offered not only a new way of presenting results but 
also the possibility of a new foundation of mathematics. When it made its main debut into 
the textbook world through Mac Lane and Birkhoff 1967,  category theory stirred an 
interest with a touch of controversy over its importance for mathematics as a whole. 
Lawvere’s paper, however, is concerned with showing that viewing the 
Ausdehnungslehre from a functorial standpoint brings out a greater richness of structure 
                                                
14 In defence of Grassmann it may be possible to argue that his more fundamental notion 
is ‘change’ (Änderung) and that this would be needed to distinguish  whatever entities, 
either points or vectors (or numbers as in the Lehrbuch der Arithmetik), were being 
generated. Admittedly ‘change’ and ‘vector’ are naturally close concepts but if it is 
possible to separate them, Swimmer’s own construction shows that one need not take 
vector as the initially generated entities within Grassmann’s general framework. 
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than, for one thing, the classical exterior algebra that derives from it. The difference 
B! A  is seen as the result of the boundary operator acting on the product AB (the axial 
vector from A to B): ABAB !=" )( . Lawvere proposes that this operator is the same as 
Grassmann’s Ausweichung or divergence. Instead of looking for a ‘+’, i.e. the operator  of 
which this is the inverse, he suggests conceiving the relationship between the operators as 
one of ‘adjointness, in the sense of category theory’ (p. 257). It has been something of a 
specialty of Lawvere’s to identify adjointness in a wide range of fields, including 
mathematical logic, as in Lawvere 1969. This particular example has an interesting 
parallel in  a remark, not noted here by Lawvere, in a summary of Grassmann’s work  
raising an objection to Grassmann’s simply substituting the vector (Strecke) for what we 
have been writing as B! A . (Sturm/Schröder/Sohnke 1879, p. 7.) It perhaps would have 
been better, they maintain, for Grassmann to have identified this with a fixed direction, or 
with its fixed infinitely distant point, and to adjoin (adjungiren) the vector.  

The contributions of Swimmer and Lawvere (the latter also acknowledges the 
collaboration of his colleague Stephen H. Schanuel) should inform all future readings of 
the Ausdehnungslehre. Though they develop their own programs, their work sheds light 
on Grassmann’s work by suggesting new understandings of it.  Furthermore, they 
exemplify Grassmann’s meaning of ‘scientific quality’, that calls for focusing on the 
learner, in a modern context. They consider it an important and natural part of their 
business to write texts for students, not just to convey the subject matter but also to 
demonstrate that their approaches are eminently suited for study and for serving as 
gateways to further mathematical avenues. (Lawvere 1996, p. 256; Swimmer 1996, p. 
279.)  

6. Conclusion 
Most mathematicians would probably agree that it is desirable to present their 

subject, at least for some purposes such as textbooks, in a dual fashion that combines 
rigor with what Grassmann called an ‘overview’. Even in a research paper a practical 
advantage can be recognized: an error that leaves a hole that is deemed fatal in a proof 
may be evident as an easily reparable slip in a presentation that gives the reader more 
explanation and context. Grassmann held a strong version of the thesis, namely that this 
method of dual presentation is as much a requirement of mathematics as its logical 
structure. It would presumably follow from this that perfecting such a method is as much 
the job of a mathematician as getting the proofs right. Regardless of whether this rather 
radical view has ever been subscribed to by others or not, it leads to questions that are of 
perennial interest to educators. Should a research paper, even one that amounts to no 
more than giving a different proof of an already established result, be presented following 
the same general principles that the author would use in a text for students? It might seem 
reasonable to do so, since in both cases it is assumed that the reader, whatever level their 
background, has not seen the ‘new’ material. If it is a learning process in both cases, is 
that process essentially different for a school student and a research mathematician? How 
do we acquire knowledge? 
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The aim of this paper is to contribute to  a better historical understanding of 
Grassmann, but this in turn may inform discussions about theories of learning 
mathematics. Admittedly we do not have much more on Grassmann’s side to help in such 
a comparison beyond the sources included in the bibliography to this paper. It would be 
useful to know what Grassmann did in the classroom on a daily basis, and unfortunately 
this is not clear. There is no extant record by Grassmann, and those few of his students 
that we have reports from agree that he was a pleasant person and a devoted teacher but 
do not convey a picture of how he might have put his textbooks into practice. Paul Carus, 
the one student who has written on Grassmann’s ideas, relies entirely on his 
Ausdehnungslehre rather than on direct personal contact.  

There are few clues in Grassmann’s personal background. His main academic 
training was directed at becoming a Protestant minister, and he studied languages and 
philosophy at university. He learned mathematics on his own and from his father, a 
schoolmaster in Stettin.  Grassmann followed his father into the same profession in the 
same city. Contrary to some accounts, it should not be assumed that Grassmann was thus 
an overburdened and frustrated secondary-school teacher. Though he did aspire to a 
university position, this was mainly for the purpose of getting into a more academic 
environment: the university positions he applied for would not necessarily have given 
him more pay or more research time than the prestigious and well-endowed school at 
which he taught. 15 An invariant theme in his life was thus teaching, or more generally the 
presentation of mathematics for the benefit of others. His mathematical creativity, far 
from being compromised, appears to have been motivated in large measure by this 
calling. 
 

                                                
15 On the typical German university compared with a gymnasium, such as that Grassmann 
taught in, see Rowe 1996, pp. 132-34. For descriptions of Grassmann as a teacher and of 
his other textbooks in trigonometry, Latin, and German, see the index to the proceedings 
Schubring 1996b.  
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